COOTRON Industrial Supply, Inc.

Standards and Specifications of
 Model: FD1238B24W9-81-4JY
 (Auto Restart Protection + F/G + PWM + IP55)

A. General Specification

Item		Specification / Standard / Condition	
01	Outline Dimension	$120 \times 120 \times 38 \mathrm{~mm}$	
02	Bearing	Dual Ball Bearing	
03	Rated Voltage	DC 24 V	
04	Operating Voltage	DC $\quad 12.0 \quad \mathrm{~V}$ ~ DC $\quad 27.6$	V
05	Starting Voltage	DC 12.0 V	1. Rated Voltage 2. $25^{\circ} \mathrm{C}, 65 \% \mathrm{RH}$
06	Rated Current (Max.)	0.70 A	
07	Actual Current	0.44 A	
08	Power Consumption (Max.)	16.80 W	
09	Rated Speed	3,200 R.P.M. $\pm 10 \%$	1. Free Air 2. Rated Voltage 3. $25^{\circ} \mathrm{C}, 65 \% \mathrm{RH}$ 4. After 10 Min . Rotating.
10	Maximum Airflow	181.10 CFM	1. Rated Voltage 2. AMCA Standard 3. Rated Speed
11	Maximum Static Pressure	$9.00 \mathrm{~mm}-\mathrm{H}_{2} \mathrm{O}$	
12	Noise Level	50.70 dB (A)	1. Rated Voltage 2. Measured in a Non-Echo Chamber 3. CNS 8753 Standard 4. ISO 3744 Test Condition
13	Life Expectancy	80,000 hrs at $40^{\circ} \mathrm{C}$	1. L10 at Conf. Level 90\%, 2. Rated Voltage
14	Net Weight	214 Gram	
15	Number of Blade	7 Blades	
16	Number of Pole	4 Poles	
17	Rotating Direction	Counter-Clockwise	Looking at Rotor Side
18	Plastic Material: Blade, Housing, Bobbin	Housing: Plastic UL 94V-0 P.B.T. Blade: Plastic UL 94V-0 P.B.T.	
19	Lead Wire	UL Type \#26 AWG	Yellow: (+) \quad Black: (-) Green: (Speed sensor)
20	Connector	Without	

COOHRON Industrial Supply, Inc.

20468 Carrey Road, Walnut, CA 91789 Tel: 909-598-6033 Fax: 909-598-6043 www.cooltron.com
B. Electrical Specification

Item		Specification / Condition	
01	Locked Rotor Protection	$\sqrt{ }$	Safety Condition
		$\sqrt{ }$	a. Auto power off after locked at rated voltage for 1 sec. b. After auto power off, circuit attempt to restart in 2-6 sec.
02	Polarity Protection	$\sqrt{ }$	Circuit is protected when VCC \& GND are exchanged, the circuit won't be burned within 10 seconds.
03	Insulation Resistance	$\sqrt{ }$	10 m .Ohm / between unshielded wire and frame at $500 \mathrm{VDC} / \mathrm{min}$.
04	Dielectric Strength	$\sqrt{ }$	5 mA Maximum. / Measured between lead wire (+) and frame at $500 \mathrm{VAC} / \mathrm{min}$.

C. Environmental Specification

Item		Specification / Condition
01	Operating Condition	Temperature: $-20^{\circ} \mathrm{C} \sim+70^{\circ} \mathrm{C}$ Humidity: $15 \% \sim 90 \% \mathrm{RH}$
02	Storage Temperature	Temperature: $-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$ Humidity: $15 \% \sim 90 \% \mathrm{RH}$
03	Test of high \& low Temperature	Test Circulation at $-10^{\circ} \mathrm{C} \& 70^{\circ} \mathrm{C}$ two times per 4 hours
04	Packing Vibration Test	Packing condition: X, Y, Z 3 directions, 1.1G load vibration test for 30 min.
05	Packing Shock Proof Test	1 corner, 3 edges, 6 faces natural drop from 60cm high, packed

D. Safety Approvals

Safety Approval	File No.
UL	E194726
CUL	E194726
TUV	B 051157907

E. Label Marking

(1)	Safety Approval
(2)	Model Number \& Appendix Code
(3)	Rated Voltage
(4)	Power Consumption
(5)	Bearing Type
(6)	Location

COOLTRON Industrial Supply, Inc.

F. Air Flow Performance Curve

G. Model Drawing

COOLTRON Industrial Supply, Inc.

H. Fan Photos

FD1238-81

I. Sensor Circuit System:

Speed Sensor or Tachometer

COOKTRON Industrial Supply, Inc.

20468 Carrey Road, Walnut, CA 91789 Tel: 909-598-6033 Fax: 909-598-6043 www.cooltron.com
J. PWM Signal Illustration.

A speed control lead can be provided that will accept a PWM signal from the customer circuit to vary the speed of the fan. The change in speed is linear by changing the Duty-Cycle of the PWM. PWM signal types are standardized as following;

Open collector type and pull-up voltage is changed by maximum operating voltage and sink current by consuming current.

PWM frequency $=25 \mathrm{KHz}$
T=T1+T2, $\alpha=T 1 / T$
α : Duty-Cycle
Va $=\alpha \times$ Vs

